How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases.
نویسندگان
چکیده
An oxygen-tolerant respiratory [NiFe]-hydrogenase is proven to be a four-electron hydrogen/oxygen oxidoreductase, catalyzing the reaction 2 H2 + O2 = 2 H2O, equivalent to hydrogen combustion, over a sustained period without inactivating. At least 86% of the H2O produced by Escherichia coli hydrogenase-1 exposed to a mixture of 90% H2 and 10% O2 is accounted for by a direct four-electron pathway, whereas up to 14% arises from slower side reactions proceeding via superoxide and hydrogen peroxide. The direct pathway is assigned to O2 reduction at the [NiFe] active site, whereas the side reactions are an unavoidable consequence of the presence of low-potential relay centers that release electrons derived from H2 oxidation. The oxidase activity is too slow to be useful in removing O2 from the bacterial periplasm; instead, the four-electron reduction of molecular oxygen to harmless water ensures that the active site survives to catalyze sustained hydrogen oxidation.
منابع مشابه
Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli
BACKGROUND Hydrogenases catalyze reversible reaction between hydrogen (H2) and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological ...
متن کاملhypD as a marker for [NiFe]-hydrogenases in microbial communities of surface waters.
Hydrogen is an important trace gas in the atmosphere. Soil microorganisms are known to be an important part of the biogeochemical H2 cycle, contributing 80 to 90% of the annual hydrogen uptake. Different aquatic ecosystems act as either sources or sinks of hydrogen, but the contribution of their microbial communities is unknown. [NiFe]-hydrogenases are the best candidates for hydrogen turnover ...
متن کاملHow the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase
Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hydro-genase was observed to comprise associated large and small subunits. The structure indicated t...
متن کاملHydrogen metabolism in the hyperthermophilic bacterium Aquifex aeolicus.
Aquifex aeolicus is a microaerophilic, hydrogen-oxidizing, hyperthermophilic bacterium containing three [NiFe] hydrogenases. Two of these three enzymes (one membrane-bound and one soluble) have been purified and characterized. The Aquifex hydrogenases are thermostable and tolerant to oxygen. A cellular function for the three hydrogenases has been proposed. The two membrane-bound periplasmic hyd...
متن کاملIdentification of a stable complex between a [NiFe]‐hydrogenase catalytic subunit and its maturation protease
Salmonella enterica serovar Typhimurium has the ability to use molecular hydrogen as a respiratory electron donor. This is facilitated by three [NiFe]-hydrogenases termed Hyd-1, Hyd-2, and Hyd-5. Hyd-1 and Hyd-5 are homologous oxygen-tolerant [NiFe]-hydrogenases. A critical step in the biosynthesis of a [NiFe]-hydrogenase is the proteolytic processing of the catalytic subunit. In this work, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 18 شماره
صفحات -
تاریخ انتشار 2014